Slow kinetics of inositol 1,4,5-trisphosphate-induced Ca2+ release: is the release ‘quantal’ or ‘non-quantal’?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantal Release of Serotonin

We have studied the origin of quantal variability for small synaptic vesicles (SSVs) and large dense-cored vesicles (LDCVs). As a model, we used serotonergic Retzius neurons of leech that allow for combined amperometrical and morphological analyses of quantal transmitter release. We find that the transmitter amount released by a SSV varies proportionally to the volume of the vesicle, suggesting...

متن کامل

Ca2+ feedback on "quantal" Ca2+ release involving ryanodine receptors.

The influence of luminal and cytoplasmic Ca2+ on the ability of ryanodine-sensitive stores to undergo multiple partial ("quantal") releases has been assessed. Increased luminal Ca2+ levels do indeed modulate sarcoplasmic reticulum Ca2+ release by lowering the threshold agonist concentration required to elicit release, but the decrease in luminal Ca2+ that accompanies a partial release is not su...

متن کامل

Inositol trisphosphate receptor Ca2+ release channels.

The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcri...

متن کامل

Quantal responses to inositol 1,4,5-trisphosphate are not a consequence of Ca2+ regulation of inositol 1,4,5-trisphosphate receptors.

Submaximal concentrations of inositol 1,4,5-trisphosphate (InsP3) rapidly release only a fraction of the InsP3-sensitive intracellular Ca2+ stores, despite the ability of further increases in InsP3 concentration to evoke further Ca2+ release. The mechanisms underlying such quantal Ca2+ mobilization are not understood, but have been proposed to involve regulatory effects of cytosolic Ca2+ on Ins...

متن کامل

Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors.

Inositol-1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) often coexist within the endoplasmic/sarcoplasmic reticulum (ER/SR) membrane and coordinate precise spatial and temporal coding of Ca(2+) signals in most animal cells. Xestospongin C (XeC) was shown to selectively block IP(3)-induced Ca(2+) release and IP(3)R-mediated signaling (Gafni et al., 1997). We have further ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biochemical Journal

سال: 1997

ISSN: 0264-6021,1470-8728

DOI: 10.1042/bj3230123